Skip to content

Datason API Modernization & Roadmap 2024

๐ŸŽฏ Current State Assessment (v0.8.0-dev)

โœ… MASSIVE PROGRESS ACHIEVED - PHASES 1 & 2 COMPLETE

Foundation Completed: - ๐Ÿš€ Performance: Complete caching system with 50-200% performance gains - ๐Ÿงช Testing: 1129+ tests passing (95.8% total, 100% core/features/integration) - ๐Ÿ”ฌ Template System: 100% success rate for 17+ types with 34 comprehensive tests - ๐Ÿ›ก๏ธ Security: All bandit warnings resolved, proper exception handling - ๐Ÿ“Š Performance: 3.73x average deserialization improvement (up to 16.86x) - ๐Ÿงน Legacy Cleanup: 116 lines of legacy code removed, modern __datason_type__ format only - ๐ŸŽ“ Audit Insights: 4-tier deserialization hierarchy fully working


๐Ÿ” What We Already Have (Feature Inventory)

Core Serialization Engine โœ…

# Already available - robust core functions
datason.serialize(obj, config=None)
datason.deserialize(data)
datason.deserialize_fast(data, config=None)
datason.deserialize_with_template(data, template)

Advanced Features โœ…

# Chunked Processing & Streaming (v0.4.0)
datason.serialize_chunked(obj, chunk_size=1000)
datason.stream_serialize("file.jsonl")
datason.deserialize_chunked_file("file.jsonl")

# Template Deserialization (100% success rate)
deserializer = datason.TemplateDeserializer(template)
result = deserializer.deserialize(data)

# Redaction Engine (v0.5.5)
config = SerializationConfig(
    redact_fields=["password", "api_key"],
    redact_patterns=[r"\d{16}"],  # Credit cards
    include_redaction_summary=True
)

# Pickle Bridge (v0.3.0) - ML Migration
datason.from_pickle("model.pkl")
datason.convert_pickle_directory("pickles/", "json/")

ML & AI Support โœ…

# ML Serializers (All major libraries)
datason.serialize_pytorch_tensor(tensor)
datason.serialize_sklearn_model(model)
datason.detect_and_serialize_ml_object(obj)
datason.get_ml_library_info()
# + TensorFlow, JAX, SciPy, PIL, HuggingFace

Configuration System โœ…

# Rich configuration system
datason.get_ml_config()          # ML-optimized
datason.get_performance_config() # Speed-focused
datason.get_strict_config()      # Type-safe
datason.get_api_config()         # API-friendly

# Cache management
datason.set_cache_scope(CacheScope.REQUEST)
datason.clear_all_caches()
datason.get_cache_metrics()

Production Features โœ…

# Security & monitoring
datason.operation_scope()     # Context manager
datason.request_scope()       # Request-scoped caching
datason.reset_cache_metrics() # Performance monitoring

๐ŸŽฏ Phase 3: API Modernization & Refactoring (v0.8.5)

Core Insight: We have all the features - we need API refactoring for better UX.

๐Ÿ“‹ The Problem

  • Functions have generic names (serialize, deserialize)
  • Intent unclear from function names (deserialize_fast vs deserialize)
  • Hidden features - users don't discover advanced capabilities
  • Inconsistent patterns - mixing styles across the API
  • Poor discoverability - powerful features buried in config

๐ŸŽฏ API Refactoring Goals

1. Intention-Revealing Names

# OLD (unclear intent)
deserialize(data)                    # Which approach?
deserialize_fast(data, config)      # Fast at what cost?

# NEW (clear intent)
datason.load_basic(data)             # Heuristics only
datason.load_smart(data)             # Auto-detect + heuristics  
datason.load_perfect(data, template) # 100% accuracy guarantee
datason.load_typed(data)             # Metadata-based reconstruction

2. Compositional Utilities

# OLD (hidden in config)
config = SerializationConfig(redact_fields=["password"])
result = serialize(data, config)

# NEW (discoverable utilities)
result = datason.dump_redacted(data, fields=["password"])
result = datason.dump_secure(data, redact_pii=True)
result = datason.dump_chunked(data, chunk_size=1000)

3. Domain-Specific Convenience

# OLD (requires ML knowledge)
config = get_ml_config()
result = serialize(model, config)

# NEW (intent-clear)
result = datason.dump_ml(model)         # Auto-ML config
result = datason.dump_api(data)         # API-safe format
result = datason.dump_fast(data)        # Performance mode

๐Ÿ”ง Implementation Strategy

Phase 3A: New API Layer (2 weeks)

  • Wrapper functions - No core changes, just new entry points
  • Backward compatibility - All existing code continues working
  • Progressive enhancement - New functions use existing backend

Phase 3B: Documentation & Examples (1 week)

  • New API first - All docs show modern API
  • Migration guide - Clear mapping old โ†’ new
  • Deprecation warnings - Soft deprecation with guidance

Phase 3C: Community Adoption (2 weeks)

  • Update examples - All examples use new API
  • Framework integration - Update Flask/Django examples
  • Benchmarks - Ensure no performance regression

๐Ÿ“Š Success Metrics

  • 0% performance regression (new API = thin wrappers)
  • 100% backward compatibility (existing code unchanged)
  • Improved discoverability (GitHub stars, documentation engagement)
  • Reduced support questions (clearer intent = fewer issues)

๐Ÿ—“๏ธ Detailed Implementation Plan

Week 1-2: Core API Refactoring

New High-Level Functions

# datason/api.py (new module)

def dump(obj, *, secure=False, chunked=False, ml_mode=False, **kwargs):
    """Modern unified dump function with clear options."""

def load_perfect(data, template):
    """100% accuracy deserialization using template."""
    return deserialize_with_template(data, template)

def load_smart(data):
    """Auto-detect types + heuristics fallback."""
    config = SerializationConfig(auto_detect_types=True)
    return deserialize_fast(data, config=config)

def load_basic(data):
    """Heuristics-only deserialization."""
    return deserialize(data)  # Current default behavior

def load_typed(data):
    """Metadata-based type reconstruction."""
    return deserialize_fast(data)  # Uses type hints if present

Domain-Specific Convenience

def dump_ml(obj, **kwargs):
    """ML-optimized serialization."""
    config = get_ml_config()
    return serialize(obj, config=config, **kwargs)

def dump_api(obj, **kwargs):
    """API-safe serialization."""
    config = get_api_config()  
    return serialize(obj, config=config, **kwargs)

def dump_secure(obj, redact_pii=True, **kwargs):
    """Security-focused serialization."""
    config = SerializationConfig(
        redact_patterns=[r'\b\d{16}\b', r'\b\d{3}-\d{2}-\d{4}\b'],
        redact_fields=['password', 'api_key', 'secret'],
        include_redaction_summary=True
    )
    return serialize(obj, config=config, **kwargs)

Compositional Utilities

def dump_chunked(obj, chunk_size=1000, **kwargs):
    """Chunked serialization wrapper."""
    return serialize_chunked(obj, chunk_size=chunk_size, **kwargs)

def stream_dump(file_path, **kwargs):
    """Streaming serialization wrapper."""
    return stream_serialize(file_path, **kwargs)

Week 3: Documentation & Migration

New Documentation Structure

docs/
โ”œโ”€โ”€ quickstart.md           # Uses new API first
โ”œโ”€โ”€ api/
โ”‚   โ”œโ”€โ”€ modern.md          # New API reference (primary)
โ”‚   โ””โ”€โ”€ legacy.md          # Old API reference (secondary)
โ”œโ”€โ”€ migration/
โ”‚   โ””โ”€โ”€ api-modernization.md # Clear mapping guide

Deprecation Strategy

# Add deprecation warnings (soft deprecation)
import warnings

def serialize(obj, config=None, **kwargs):
    if not _suppress_deprecation_warnings:
        warnings.warn(
            "serialize() is deprecated. Use dump() or dump_ml() for better intent clarity. "
            "See migration guide: https://docs.datason.dev/migration/api-modernization",
            DeprecationWarning,
            stacklevel=2
        )
    return _serialize_impl(obj, config, **kwargs)

Week 4: Integration & Polish

Framework Examples Update

# OLD Flask example
@app.route('/api/data')
def get_data():
    return serialize(data)

# NEW Flask example  
@app.route('/api/data')
def get_data():
    return datason.dump_api(data)  # Clear intent for API use

Benchmark Integration

  • Verify new API has zero performance overhead
  • Update all benchmarks to use new API
  • Add performance regression tests

๐ŸŽ“ Lessons Learned Integration

Critical Insights from Phases 1 & 2

  1. No magic without hints - Can't detect types from pure JSON
  2. 4 approaches, 4 use cases - Each has clear success rates and trade-offs
  3. Template = 100% success - When user provides structure, we deliver perfection
  4. Auto-detect = 80-90% - Good for exploration, not production
  5. Cache scope matters - Different workflows need different caching strategies

API Design Principles

  1. Intent over implementation - Function names reveal purpose
  2. Composition over configuration - Small focused functions > big config objects
  3. Progressive disclosure - Basic โ†’ Smart โ†’ Perfect โ†’ Custom
  4. Zero magic - Clear trade-offs, no hidden surprises

๐Ÿš€ Expected Outcomes

Phase 3 Success Metrics

  • 100% backward compatibility - No breaking changes
  • 0% performance regression - New API = thin wrappers
  • 50% reduction in "how do I..." issues - Better discoverability
  • Increased adoption - Framework integrations, tutorial mentions

Post-Phase 3 State

# Clear, intent-revealing API
result = datason.dump_ml(model)           # ML-optimized
data = datason.load_perfect(result, model) # 100% accuracy

# Compositional utilities  
secure_data = datason.dump_secure(sensitive_data, redact_pii=True)

# Progressive complexity
basic_result = datason.load_basic(json_data)      # Fast heuristics
smart_result = datason.load_smart(json_data)      # Auto-detect + fallback
perfect_result = datason.load_perfect(json_data, template) # Guaranteed accuracy

Long-term Vision (v0.9.0+)

  • Framework integrations - Built-in FastAPI, Django, Flask serializers
  • CLI tools - datason convert, datason validate, datason benchmark
  • Language bindings - JavaScript, Rust clients for datason JSON format
  • Enterprise features - Schema validation, change detection, compliance reporting

๐Ÿ“‹ Next Steps

Immediate Actions (This Week)

  1. Create datason/api.py - New API layer module
  2. Implement wrapper functions - dump_*, load_* families
  3. Add deprecation warnings - Soft deprecation with migration guidance
  4. Update main imports - Expose new functions in __init__.py

Phase 3 Completion Criteria

  • New API functions implemented with 100% test coverage
  • All existing tests passing with zero performance regression
  • Documentation updated to show new API first
  • Migration guide published with clear old โ†’ new mappings
  • At least 3 real-world examples updated to use new API

Phase 3 represents the evolution from "feature-complete" to "user-complete" - making datason's powerful capabilities discoverable and delightful to use.


Roadmap Updated: December 2024
Status: Phase 3 ready for implementation - Modern API & ML-first approach