Datason API Modernization & Roadmap 2024¶
๐ฏ Current State Assessment (v0.8.0-dev)¶
โ MASSIVE PROGRESS ACHIEVED - PHASES 1 & 2 COMPLETE¶
Foundation Completed:
- ๐ Performance: Complete caching system with 50-200% performance gains
- ๐งช Testing: 1129+ tests passing (95.8% total, 100% core/features/integration)
- ๐ฌ Template System: 100% success rate for 17+ types with 34 comprehensive tests
- ๐ก๏ธ Security: All bandit warnings resolved, proper exception handling
- ๐ Performance: 3.73x average deserialization improvement (up to 16.86x)
- ๐งน Legacy Cleanup: 116 lines of legacy code removed, modern __datason_type__
format only
- ๐ Audit Insights: 4-tier deserialization hierarchy fully working
๐ What We Already Have (Feature Inventory)¶
Core Serialization Engine โ ¶
# Already available - robust core functions
datason.serialize(obj, config=None)
datason.deserialize(data)
datason.deserialize_fast(data, config=None)
datason.deserialize_with_template(data, template)
Advanced Features โ ¶
# Chunked Processing & Streaming (v0.4.0)
datason.serialize_chunked(obj, chunk_size=1000)
datason.stream_serialize("file.jsonl")
datason.deserialize_chunked_file("file.jsonl")
# Template Deserialization (100% success rate)
deserializer = datason.TemplateDeserializer(template)
result = deserializer.deserialize(data)
# Redaction Engine (v0.5.5)
config = SerializationConfig(
redact_fields=["password", "api_key"],
redact_patterns=[r"\d{16}"], # Credit cards
include_redaction_summary=True
)
# Pickle Bridge (v0.3.0) - ML Migration
datason.from_pickle("model.pkl")
datason.convert_pickle_directory("pickles/", "json/")
ML & AI Support โ ¶
# ML Serializers (All major libraries)
datason.serialize_pytorch_tensor(tensor)
datason.serialize_sklearn_model(model)
datason.detect_and_serialize_ml_object(obj)
datason.get_ml_library_info()
# + TensorFlow, JAX, SciPy, PIL, HuggingFace
Configuration System โ ¶
# Rich configuration system
datason.get_ml_config() # ML-optimized
datason.get_performance_config() # Speed-focused
datason.get_strict_config() # Type-safe
datason.get_api_config() # API-friendly
# Cache management
datason.set_cache_scope(CacheScope.REQUEST)
datason.clear_all_caches()
datason.get_cache_metrics()
Production Features โ ¶
# Security & monitoring
datason.operation_scope() # Context manager
datason.request_scope() # Request-scoped caching
datason.reset_cache_metrics() # Performance monitoring
๐ฏ Phase 3: API Modernization & Refactoring (v0.8.5)¶
Core Insight: We have all the features - we need API refactoring for better UX.
๐ The Problem¶
- Functions have generic names (
serialize
,deserialize
) - Intent unclear from function names (
deserialize_fast
vsdeserialize
) - Hidden features - users don't discover advanced capabilities
- Inconsistent patterns - mixing styles across the API
- Poor discoverability - powerful features buried in config
๐ฏ API Refactoring Goals¶
1. Intention-Revealing Names¶
# OLD (unclear intent)
deserialize(data) # Which approach?
deserialize_fast(data, config) # Fast at what cost?
# NEW (clear intent)
datason.load_basic(data) # Heuristics only
datason.load_smart(data) # Auto-detect + heuristics
datason.load_perfect(data, template) # 100% accuracy guarantee
datason.load_typed(data) # Metadata-based reconstruction
2. Compositional Utilities¶
# OLD (hidden in config)
config = SerializationConfig(redact_fields=["password"])
result = serialize(data, config)
# NEW (discoverable utilities)
result = datason.dump_redacted(data, fields=["password"])
result = datason.dump_secure(data, redact_pii=True)
result = datason.dump_chunked(data, chunk_size=1000)
3. Domain-Specific Convenience¶
# OLD (requires ML knowledge)
config = get_ml_config()
result = serialize(model, config)
# NEW (intent-clear)
result = datason.dump_ml(model) # Auto-ML config
result = datason.dump_api(data) # API-safe format
result = datason.dump_fast(data) # Performance mode
๐ง Implementation Strategy¶
Phase 3A: New API Layer (2 weeks)¶
- Wrapper functions - No core changes, just new entry points
- Backward compatibility - All existing code continues working
- Progressive enhancement - New functions use existing backend
Phase 3B: Documentation & Examples (1 week)¶
- New API first - All docs show modern API
- Migration guide - Clear mapping old โ new
- Deprecation warnings - Soft deprecation with guidance
Phase 3C: Community Adoption (2 weeks)¶
- Update examples - All examples use new API
- Framework integration - Update Flask/Django examples
- Benchmarks - Ensure no performance regression
๐ Success Metrics¶
- 0% performance regression (new API = thin wrappers)
- 100% backward compatibility (existing code unchanged)
- Improved discoverability (GitHub stars, documentation engagement)
- Reduced support questions (clearer intent = fewer issues)
๐๏ธ Detailed Implementation Plan¶
Week 1-2: Core API Refactoring¶
New High-Level Functions¶
# datason/api.py (new module)
def dump(obj, *, secure=False, chunked=False, ml_mode=False, **kwargs):
"""Modern unified dump function with clear options."""
def load_perfect(data, template):
"""100% accuracy deserialization using template."""
return deserialize_with_template(data, template)
def load_smart(data):
"""Auto-detect types + heuristics fallback."""
config = SerializationConfig(auto_detect_types=True)
return deserialize_fast(data, config=config)
def load_basic(data):
"""Heuristics-only deserialization."""
return deserialize(data) # Current default behavior
def load_typed(data):
"""Metadata-based type reconstruction."""
return deserialize_fast(data) # Uses type hints if present
Domain-Specific Convenience¶
def dump_ml(obj, **kwargs):
"""ML-optimized serialization."""
config = get_ml_config()
return serialize(obj, config=config, **kwargs)
def dump_api(obj, **kwargs):
"""API-safe serialization."""
config = get_api_config()
return serialize(obj, config=config, **kwargs)
def dump_secure(obj, redact_pii=True, **kwargs):
"""Security-focused serialization."""
config = SerializationConfig(
redact_patterns=[r'\b\d{16}\b', r'\b\d{3}-\d{2}-\d{4}\b'],
redact_fields=['password', 'api_key', 'secret'],
include_redaction_summary=True
)
return serialize(obj, config=config, **kwargs)
Compositional Utilities¶
def dump_chunked(obj, chunk_size=1000, **kwargs):
"""Chunked serialization wrapper."""
return serialize_chunked(obj, chunk_size=chunk_size, **kwargs)
def stream_dump(file_path, **kwargs):
"""Streaming serialization wrapper."""
return stream_serialize(file_path, **kwargs)
Week 3: Documentation & Migration¶
New Documentation Structure¶
docs/
โโโ quickstart.md # Uses new API first
โโโ api/
โ โโโ modern.md # New API reference (primary)
โ โโโ legacy.md # Old API reference (secondary)
โโโ migration/
โ โโโ api-modernization.md # Clear mapping guide
Deprecation Strategy¶
# Add deprecation warnings (soft deprecation)
import warnings
def serialize(obj, config=None, **kwargs):
if not _suppress_deprecation_warnings:
warnings.warn(
"serialize() is deprecated. Use dump() or dump_ml() for better intent clarity. "
"See migration guide: https://docs.datason.dev/migration/api-modernization",
DeprecationWarning,
stacklevel=2
)
return _serialize_impl(obj, config, **kwargs)
Week 4: Integration & Polish¶
Framework Examples Update¶
# OLD Flask example
@app.route('/api/data')
def get_data():
return serialize(data)
# NEW Flask example
@app.route('/api/data')
def get_data():
return datason.dump_api(data) # Clear intent for API use
Benchmark Integration¶
- Verify new API has zero performance overhead
- Update all benchmarks to use new API
- Add performance regression tests
๐ Lessons Learned Integration¶
Critical Insights from Phases 1 & 2¶
- No magic without hints - Can't detect types from pure JSON
- 4 approaches, 4 use cases - Each has clear success rates and trade-offs
- Template = 100% success - When user provides structure, we deliver perfection
- Auto-detect = 80-90% - Good for exploration, not production
- Cache scope matters - Different workflows need different caching strategies
API Design Principles¶
- Intent over implementation - Function names reveal purpose
- Composition over configuration - Small focused functions > big config objects
- Progressive disclosure - Basic โ Smart โ Perfect โ Custom
- Zero magic - Clear trade-offs, no hidden surprises
๐ Expected Outcomes¶
Phase 3 Success Metrics¶
- 100% backward compatibility - No breaking changes
- 0% performance regression - New API = thin wrappers
- 50% reduction in "how do I..." issues - Better discoverability
- Increased adoption - Framework integrations, tutorial mentions
Post-Phase 3 State¶
# Clear, intent-revealing API
result = datason.dump_ml(model) # ML-optimized
data = datason.load_perfect(result, model) # 100% accuracy
# Compositional utilities
secure_data = datason.dump_secure(sensitive_data, redact_pii=True)
# Progressive complexity
basic_result = datason.load_basic(json_data) # Fast heuristics
smart_result = datason.load_smart(json_data) # Auto-detect + fallback
perfect_result = datason.load_perfect(json_data, template) # Guaranteed accuracy
Long-term Vision (v0.9.0+)¶
- Framework integrations - Built-in FastAPI, Django, Flask serializers
- CLI tools -
datason convert
,datason validate
,datason benchmark
- Language bindings - JavaScript, Rust clients for datason JSON format
- Enterprise features - Schema validation, change detection, compliance reporting
๐ Next Steps¶
Immediate Actions (This Week)¶
- Create
datason/api.py
- New API layer module - Implement wrapper functions -
dump_*
,load_*
families - Add deprecation warnings - Soft deprecation with migration guidance
- Update main imports - Expose new functions in
__init__.py
Phase 3 Completion Criteria¶
- New API functions implemented with 100% test coverage
- All existing tests passing with zero performance regression
- Documentation updated to show new API first
- Migration guide published with clear old โ new mappings
- At least 3 real-world examples updated to use new API
Phase 3 represents the evolution from "feature-complete" to "user-complete" - making datason's powerful capabilities discoverable and delightful to use.
Roadmap Updated: December 2024
Status: Phase 3 ready for implementation - Modern API & ML-first approach