Skip to content

ML Model Serving Architecture with Datason

This document provides a comprehensive overview of how datason integrates across the entire machine learning model serving pipeline, from development to production deployment.

Table of Contents

  1. Overview
  2. High-Level Architecture
  3. Data Flow Sequence
  4. Framework Integration
  5. Production Deployment
  6. End-to-End Data Flow
  7. Key Benefits
  8. Implementation Examples

Overview

Datason serves as the universal serialization layer that ensures consistent data handling across all components of your ML serving infrastructure. It eliminates the common pain points of:

  • Type Inconsistencies: UUID strings vs objects, datetime formats, custom ML types
  • Framework Incompatibilities: Different serialization formats between frameworks
  • API Integration Issues: Pydantic model validation failures
  • Data Pipeline Breaks: Inconsistent data formats between services

High-Level Architecture

The following diagram shows how datason integrates across the entire ML serving ecosystem:

graph TB
    subgraph "Model Development"
        A[Model Training] --> B[Model Validation]
        B --> C[Model Serialization<br/>with Datason]
        C --> D[Model Registry<br/>MLflow/BentoML]
    end

    subgraph "Data Pipeline"
        E[Raw Data] --> F[Feature Engineering]
        F --> G[Data Validation]
        G --> H[Serialized Features<br/>with Datason]
    end

    subgraph "Model Serving Layer"
        I[BentoML Service] --> J[Ray Serve]
        J --> K[FastAPI/Starlette]
        K --> L[Streamlit Dashboard]
        I --> M[MLflow Serving]
        M --> N[Seldon/KServe]
    end

    subgraph "API Gateway"
        O[Load Balancer] --> P[API Gateway]
        P --> Q[Authentication]
        Q --> R[Rate Limiting]
    end

    subgraph "Database Layer"
        S[PostgreSQL<br/>Predictions] --> T[Redis<br/>Cache]
        T --> U[MongoDB<br/>Metadata]
        U --> V[InfluxDB<br/>Metrics]
    end

    subgraph "Monitoring"
        W[Prometheus] --> X[Grafana]
        X --> Y[Alerting]
        Y --> Z[Logging]
    end

    %% Data Flow
    D --> I
    D --> J
    D --> M
    H --> I
    H --> J
    H --> M

    %% API Flow
    O --> I
    O --> J
    O --> K
    O --> L

    %% Storage Flow
    I --> S
    J --> S
    K --> S
    L --> S

    I --> T
    J --> T
    K --> T

    %% Monitoring Flow
    I --> W
    J --> W
    K --> W
    L --> W

    %% Styling
    classDef datason fill:#e1f5fe,stroke:#01579b,stroke-width:3px
    classDef framework fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
    classDef storage fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
    classDef monitoring fill:#fff3e0,stroke:#e65100,stroke-width:2px

    class C,H datason
    class I,J,K,L,M,N framework
    class S,T,U,V storage
    class W,X,Y,Z monitoring

Key Components

  • Model Development: Datason ensures consistent serialization of trained models and metadata
  • Data Pipeline: Features and predictions are serialized consistently across all pipeline stages
  • Serving Layer: All ML frameworks use the same datason configuration for API compatibility
  • Storage: Consistent data formats across different database systems
  • Monitoring: Standardized metrics and logging formats

Data Flow Sequence

This sequence diagram shows how a typical prediction request flows through the system:

sequenceDiagram
    participant Client
    participant API as "API Gateway"
    participant BentoML as "BentoML Service"
    participant Datason as "Datason Serializer"
    participant Model as "ML Model"
    participant Cache as "Redis Cache"
    participant DB as "PostgreSQL"
    participant Metrics as "Prometheus"

    Client->>API: POST /predict<br/>{"features": {...}}
    API->>BentoML: Forward request

    Note over BentoML: Input validation &<br/>rate limiting

    BentoML->>Datason: Deserialize features<br/>with API config
    Datason-->>BentoML: Validated feature objects

    BentoML->>Cache: Check prediction cache
    alt Cache Hit
        Cache-->>BentoML: Cached prediction
    else Cache Miss
        BentoML->>Model: Run inference
        Model-->>BentoML: Raw prediction
        BentoML->>Cache: Store prediction
    end

    BentoML->>Datason: Serialize prediction<br/>with API config
    Datason-->>BentoML: JSON response

    par Store Results
        BentoML->>DB: Store prediction log
    and Update Metrics
        BentoML->>Metrics: Update counters<br/>& histograms
    end

    BentoML-->>API: Serialized response
    API-->>Client: {"prediction": {...},<br/>"model_version": "1.0.0"}

    Note over Client,Metrics: All data serialized/deserialized<br/>with Datason for consistency

Critical Points

  1. Single Configuration: All services use the same datason API configuration
  2. Type Safety: UUIDs, dates, and custom types are handled consistently
  3. Performance: Caching works reliably due to consistent serialization
  4. Monitoring: Metrics are comparable across all services

Framework Integration

Datason acts as the universal adapter between different ML frameworks and serving platforms:

graph LR
    subgraph "Data Sources"
        A[User Input] --> B[Feature Store]
        B --> C[Real-time Stream]
        C --> D[Batch Data]
    end

    subgraph "Datason Processing"
        E[Input Validation] --> F[Type Detection]
        F --> G[Serialization Config]
        G --> H[UUID Handling]
        H --> I[Date Formatting]
        I --> J[Custom Types]
    end

    subgraph "ML Frameworks"
        K[Scikit-learn] --> L[PyTorch]
        L --> M[TensorFlow]
        M --> N[XGBoost]
        N --> O[CatBoost]
        O --> P[Optuna]
    end

    subgraph "Serving Platforms"
        Q[BentoML] --> R[Ray Serve]
        R --> S[MLflow]
        S --> T[Seldon Core]
        T --> U[KServe]
        U --> V[Vertex AI]
    end

    subgraph "Output Destinations"
        W[REST API] --> X[GraphQL]
        X --> Y[WebSocket]
        Y --> Z[Message Queue]
        Z --> AA[Database]
        AA --> BB[File Storage]
    end

    %% Data Flow Through Datason
    A --> E
    B --> E
    C --> E
    D --> E

    J --> K
    J --> L
    J --> M
    J --> N
    J --> O
    J --> P

    K --> Q
    L --> Q
    M --> R
    N --> R
    O --> S
    P --> S

    Q --> W
    R --> W
    S --> X
    T --> Y
    U --> Z
    V --> AA

    %% Styling
    classDef datason fill:#e1f5fe,stroke:#01579b,stroke-width:4px
    classDef input fill:#f1f8e9,stroke:#33691e,stroke-width:2px
    classDef ml fill:#fce4ec,stroke:#880e4f,stroke-width:2px
    classDef serving fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
    classDef output fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px

    class E,F,G,H,I,J datason
    class A,B,C,D input
    class K,L,M,N,O,P ml
    class Q,R,S,T,U,V serving
    class W,X,Y,Z,AA,BB output

Framework-Specific Benefits

  • Scikit-learn: Seamless integration with Pydantic models
  • PyTorch: Consistent tensor serialization across services
  • TensorFlow: SavedModel compatibility with API layers
  • XGBoost/CatBoost: Model metadata preservation
  • Optuna: Study and trial serialization for experiment tracking

Production Deployment

The production deployment architecture shows how datason configurations flow through the entire deployment pipeline:

graph TB
    subgraph "Development Phase"
        A[Data Scientists] --> B[Feature Engineering]
        B --> C[Model Training]
        C --> D[Model Validation]
        D --> E[Datason Serialization<br/>Config Setup]
    end

    subgraph "Datason Configuration"
        F[SerializationConfig] --> G[API Config<br/>UUID as strings]
        F --> H[Performance Config<br/>Size limits]
        F --> I[ML Config<br/>Framework support]
        G --> J[get_api_config]
        H --> K[get_performance_config]
        I --> L[get_ml_config]
    end

    subgraph "Model Registry"
        M[MLflow Tracking] --> N[Model Versioning]
        N --> O[Model Metadata]
        O --> P[Deployment Artifacts]
    end

    subgraph "Serving Infrastructure"
        Q[Container Registry] --> R[Kubernetes Cluster]
        R --> S[Service Mesh]
        S --> T[Load Balancer]
    end

    subgraph "Production Deployment"
        U[Blue-Green Deploy] --> V[Canary Release]
        V --> W[A/B Testing]
        W --> X[Traffic Routing]
    end

    subgraph "Monitoring & Observability"
        Y[Health Checks] --> Z[Metrics Collection]
        Z --> AA[Log Aggregation]
        AA --> BB[Alerting]
        BB --> CC[Dashboard]
    end

    subgraph "Data Flow"
        DD[Client Request] --> EE[API Gateway]
        EE --> FF[Authentication]
        FF --> GG[Rate Limiting]
        GG --> HH[Model Service]
        HH --> II[Prediction Response]
    end

    %% Connections
    E --> J
    E --> K
    E --> L

    J --> M
    K --> M
    L --> M

    P --> Q
    Q --> U

    HH --> Y
    HH --> Z

    DD --> EE
    II --> DD

    %% Styling
    classDef datason fill:#e1f5fe,stroke:#01579b,stroke-width:3px
    classDef config fill:#fff3e0,stroke:#e65100,stroke-width:2px
    classDef infra fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
    classDef monitor fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
    classDef flow fill:#fce4ec,stroke:#880e4f,stroke-width:2px

    class E,J,K,L datason
    class F,G,H,I config
    class Q,R,S,T,U,V,W,X infra
    class Y,Z,AA,BB,CC monitor
    class DD,EE,FF,GG,HH,II flow

Deployment Best Practices

  1. Configuration Management: Use environment-specific datason configs
  2. Version Control: Track serialization configs with model versions
  3. Testing: Validate serialization compatibility in CI/CD
  4. Monitoring: Track serialization performance and errors

End-to-End Data Flow

This comprehensive diagram shows how data flows through the entire ecosystem:

graph TD
    subgraph "Client Applications"
        A[Web Dashboard] --> B[Mobile App]
        B --> C[CLI Tool]
        C --> D[Jupyter Notebook]
    end

    subgraph "API Layer"
        E[REST Endpoints] --> F[GraphQL API]
        F --> G[WebSocket Stream]
        G --> H[gRPC Service]
    end

    subgraph "Datason Processing Hub"
        I[Request Validation] --> J[Type Detection]
        J --> K[UUID Conversion<br/>String ↔ UUID]
        K --> L[Date Formatting<br/>ISO ↔ DateTime]
        L --> M[Custom ML Types<br/>Models, Studies, etc.]
        M --> N[Response Serialization]
    end

    subgraph "ML Model Services"
        O[BentoML<br/>Production Ready] --> P[Ray Serve<br/>Scalable]
        P --> Q[MLflow<br/>Experiment Tracking]
        Q --> R[Streamlit<br/>Interactive UI]
        R --> S[Custom FastAPI<br/>Flexible]
    end

    subgraph "Storage Systems"
        T[PostgreSQL<br/>Structured Data] --> U[Redis<br/>Cache & Sessions]
        U --> V[MongoDB<br/>Document Store]
        V --> W[S3/MinIO<br/>Object Storage]
        W --> X[InfluxDB<br/>Time Series]
    end

    subgraph "External Integrations"
        Y[Slack Notifications] --> Z[Email Alerts]
        Z --> AA[Webhook Callbacks]
        AA --> BB[Third-party APIs]
    end

    %% Data Flow
    A --> E
    B --> E
    C --> F
    D --> G

    E --> I
    F --> I
    G --> I
    H --> I

    N --> O
    N --> P
    N --> Q
    N --> R
    N --> S

    O --> T
    P --> U
    Q --> V
    R --> W
    S --> X

    O --> Y
    P --> Z
    Q --> AA
    R --> BB

    %% Bidirectional flows
    I -.-> N
    T -.-> I
    U -.-> I
    V -.-> I
    W -.-> I
    X -.-> I

    %% Styling
    classDef client fill:#e3f2fd,stroke:#0d47a1,stroke-width:2px
    classDef api fill:#f1f8e9,stroke:#33691e,stroke-width:2px
    classDef datason fill:#e1f5fe,stroke:#01579b,stroke-width:4px
    classDef ml fill:#fce4ec,stroke:#880e4f,stroke-width:2px
    classDef storage fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
    classDef external fill:#fff3e0,stroke:#e65100,stroke-width:2px

    class A,B,C,D client
    class E,F,G,H api
    class I,J,K,L,M,N datason
    class O,P,Q,R,S ml
    class T,U,V,W,X storage
    class Y,Z,AA,BB external

Key Benefits

1. Consistency Across Services

  • All services use the same serialization format
  • UUIDs are consistently handled as strings in APIs
  • Dates follow ISO format standards
  • Custom ML types are preserved across frameworks

2. Reduced Integration Complexity

  • No more Pydantic validation errors
  • Seamless data exchange between services
  • Simplified debugging and troubleshooting
  • Consistent error handling

3. Performance Optimization

  • Efficient caching due to consistent serialization
  • Reduced data transformation overhead
  • Optimized for ML workloads
  • Configurable performance limits

4. Developer Experience

  • Single configuration for all services
  • Clear documentation and examples
  • Type safety and validation
  • Easy debugging and monitoring

Implementation Examples

Basic Configuration

from datason import get_api_config, serialize, deserialize

# Use the standard API configuration
config = get_api_config()

# Serialize data for API responses
response_data = serialize(prediction_result, config=config)

# Deserialize incoming requests
features = deserialize(request_data, config=config)

Framework Integration

# BentoML Service
import bentoml
from datason import get_api_config

config = get_api_config()

@svc.api(input=JSON(), output=JSON())
def predict(input_data: dict) -> dict:
    features = deserialize(input_data["features"], config=config)
    prediction = model.predict(features)
    return serialize({"prediction": prediction}, config=config)

Production Monitoring

from datason import get_api_config
from prometheus_client import Counter, Histogram

config = get_api_config()
request_counter = Counter('predictions_total', ['model_version', 'status'])
latency_histogram = Histogram('prediction_latency_seconds')

@latency_histogram.time()
def predict_with_monitoring(features):
    try:
        result = model.predict(features)
        request_counter.labels(model_version="1.0.0", status="success").inc()
        return serialize(result, config=config)
    except Exception as e:
        request_counter.labels(model_version="1.0.0", status="error").inc()
        raise

Next Steps

  1. Review the Production Patterns Guide for detailed implementation patterns
  2. Explore Framework-Specific Examples for your ML serving platform
  3. Set up monitoring using the patterns shown in the architecture
  4. Implement A/B testing with consistent serialization across model versions
  5. Scale your deployment using the production-ready patterns