ML Model Serving Architecture with Datason¶
This document provides a comprehensive overview of how datason integrates across the entire machine learning model serving pipeline, from development to production deployment.
Table of Contents¶
- Overview
- High-Level Architecture
- Data Flow Sequence
- Framework Integration
- Production Deployment
- End-to-End Data Flow
- Key Benefits
- Implementation Examples
Overview¶
Datason serves as the universal serialization layer that ensures consistent data handling across all components of your ML serving infrastructure. It eliminates the common pain points of:
- Type Inconsistencies: UUID strings vs objects, datetime formats, custom ML types
- Framework Incompatibilities: Different serialization formats between frameworks
- API Integration Issues: Pydantic model validation failures
- Data Pipeline Breaks: Inconsistent data formats between services
High-Level Architecture¶
The following diagram shows how datason integrates across the entire ML serving ecosystem:
graph TB
subgraph "Model Development"
A[Model Training] --> B[Model Validation]
B --> C[Model Serialization<br/>with Datason]
C --> D[Model Registry<br/>MLflow/BentoML]
end
subgraph "Data Pipeline"
E[Raw Data] --> F[Feature Engineering]
F --> G[Data Validation]
G --> H[Serialized Features<br/>with Datason]
end
subgraph "Model Serving Layer"
I[BentoML Service] --> J[Ray Serve]
J --> K[FastAPI/Starlette]
K --> L[Streamlit Dashboard]
I --> M[MLflow Serving]
M --> N[Seldon/KServe]
end
subgraph "API Gateway"
O[Load Balancer] --> P[API Gateway]
P --> Q[Authentication]
Q --> R[Rate Limiting]
end
subgraph "Database Layer"
S[PostgreSQL<br/>Predictions] --> T[Redis<br/>Cache]
T --> U[MongoDB<br/>Metadata]
U --> V[InfluxDB<br/>Metrics]
end
subgraph "Monitoring"
W[Prometheus] --> X[Grafana]
X --> Y[Alerting]
Y --> Z[Logging]
end
%% Data Flow
D --> I
D --> J
D --> M
H --> I
H --> J
H --> M
%% API Flow
O --> I
O --> J
O --> K
O --> L
%% Storage Flow
I --> S
J --> S
K --> S
L --> S
I --> T
J --> T
K --> T
%% Monitoring Flow
I --> W
J --> W
K --> W
L --> W
%% Styling
classDef datason fill:#e1f5fe,stroke:#01579b,stroke-width:3px
classDef framework fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
classDef storage fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
classDef monitoring fill:#fff3e0,stroke:#e65100,stroke-width:2px
class C,H datason
class I,J,K,L,M,N framework
class S,T,U,V storage
class W,X,Y,Z monitoring
Key Components¶
- Model Development: Datason ensures consistent serialization of trained models and metadata
- Data Pipeline: Features and predictions are serialized consistently across all pipeline stages
- Serving Layer: All ML frameworks use the same datason configuration for API compatibility
- Storage: Consistent data formats across different database systems
- Monitoring: Standardized metrics and logging formats
Data Flow Sequence¶
This sequence diagram shows how a typical prediction request flows through the system:
sequenceDiagram
participant Client
participant API as "API Gateway"
participant BentoML as "BentoML Service"
participant Datason as "Datason Serializer"
participant Model as "ML Model"
participant Cache as "Redis Cache"
participant DB as "PostgreSQL"
participant Metrics as "Prometheus"
Client->>API: POST /predict<br/>{"features": {...}}
API->>BentoML: Forward request
Note over BentoML: Input validation &<br/>rate limiting
BentoML->>Datason: Deserialize features<br/>with API config
Datason-->>BentoML: Validated feature objects
BentoML->>Cache: Check prediction cache
alt Cache Hit
Cache-->>BentoML: Cached prediction
else Cache Miss
BentoML->>Model: Run inference
Model-->>BentoML: Raw prediction
BentoML->>Cache: Store prediction
end
BentoML->>Datason: Serialize prediction<br/>with API config
Datason-->>BentoML: JSON response
par Store Results
BentoML->>DB: Store prediction log
and Update Metrics
BentoML->>Metrics: Update counters<br/>& histograms
end
BentoML-->>API: Serialized response
API-->>Client: {"prediction": {...},<br/>"model_version": "1.0.0"}
Note over Client,Metrics: All data serialized/deserialized<br/>with Datason for consistency
Critical Points¶
- Single Configuration: All services use the same datason API configuration
- Type Safety: UUIDs, dates, and custom types are handled consistently
- Performance: Caching works reliably due to consistent serialization
- Monitoring: Metrics are comparable across all services
Framework Integration¶
Datason acts as the universal adapter between different ML frameworks and serving platforms:
graph LR
subgraph "Data Sources"
A[User Input] --> B[Feature Store]
B --> C[Real-time Stream]
C --> D[Batch Data]
end
subgraph "Datason Processing"
E[Input Validation] --> F[Type Detection]
F --> G[Serialization Config]
G --> H[UUID Handling]
H --> I[Date Formatting]
I --> J[Custom Types]
end
subgraph "ML Frameworks"
K[Scikit-learn] --> L[PyTorch]
L --> M[TensorFlow]
M --> N[XGBoost]
N --> O[CatBoost]
O --> P[Optuna]
end
subgraph "Serving Platforms"
Q[BentoML] --> R[Ray Serve]
R --> S[MLflow]
S --> T[Seldon Core]
T --> U[KServe]
U --> V[Vertex AI]
end
subgraph "Output Destinations"
W[REST API] --> X[GraphQL]
X --> Y[WebSocket]
Y --> Z[Message Queue]
Z --> AA[Database]
AA --> BB[File Storage]
end
%% Data Flow Through Datason
A --> E
B --> E
C --> E
D --> E
J --> K
J --> L
J --> M
J --> N
J --> O
J --> P
K --> Q
L --> Q
M --> R
N --> R
O --> S
P --> S
Q --> W
R --> W
S --> X
T --> Y
U --> Z
V --> AA
%% Styling
classDef datason fill:#e1f5fe,stroke:#01579b,stroke-width:4px
classDef input fill:#f1f8e9,stroke:#33691e,stroke-width:2px
classDef ml fill:#fce4ec,stroke:#880e4f,stroke-width:2px
classDef serving fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
classDef output fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
class E,F,G,H,I,J datason
class A,B,C,D input
class K,L,M,N,O,P ml
class Q,R,S,T,U,V serving
class W,X,Y,Z,AA,BB output
Framework-Specific Benefits¶
- Scikit-learn: Seamless integration with Pydantic models
- PyTorch: Consistent tensor serialization across services
- TensorFlow: SavedModel compatibility with API layers
- XGBoost/CatBoost: Model metadata preservation
- Optuna: Study and trial serialization for experiment tracking
Production Deployment¶
The production deployment architecture shows how datason configurations flow through the entire deployment pipeline:
graph TB
subgraph "Development Phase"
A[Data Scientists] --> B[Feature Engineering]
B --> C[Model Training]
C --> D[Model Validation]
D --> E[Datason Serialization<br/>Config Setup]
end
subgraph "Datason Configuration"
F[SerializationConfig] --> G[API Config<br/>UUID as strings]
F --> H[Performance Config<br/>Size limits]
F --> I[ML Config<br/>Framework support]
G --> J[get_api_config]
H --> K[get_performance_config]
I --> L[get_ml_config]
end
subgraph "Model Registry"
M[MLflow Tracking] --> N[Model Versioning]
N --> O[Model Metadata]
O --> P[Deployment Artifacts]
end
subgraph "Serving Infrastructure"
Q[Container Registry] --> R[Kubernetes Cluster]
R --> S[Service Mesh]
S --> T[Load Balancer]
end
subgraph "Production Deployment"
U[Blue-Green Deploy] --> V[Canary Release]
V --> W[A/B Testing]
W --> X[Traffic Routing]
end
subgraph "Monitoring & Observability"
Y[Health Checks] --> Z[Metrics Collection]
Z --> AA[Log Aggregation]
AA --> BB[Alerting]
BB --> CC[Dashboard]
end
subgraph "Data Flow"
DD[Client Request] --> EE[API Gateway]
EE --> FF[Authentication]
FF --> GG[Rate Limiting]
GG --> HH[Model Service]
HH --> II[Prediction Response]
end
%% Connections
E --> J
E --> K
E --> L
J --> M
K --> M
L --> M
P --> Q
Q --> U
HH --> Y
HH --> Z
DD --> EE
II --> DD
%% Styling
classDef datason fill:#e1f5fe,stroke:#01579b,stroke-width:3px
classDef config fill:#fff3e0,stroke:#e65100,stroke-width:2px
classDef infra fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
classDef monitor fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
classDef flow fill:#fce4ec,stroke:#880e4f,stroke-width:2px
class E,J,K,L datason
class F,G,H,I config
class Q,R,S,T,U,V,W,X infra
class Y,Z,AA,BB,CC monitor
class DD,EE,FF,GG,HH,II flow
Deployment Best Practices¶
- Configuration Management: Use environment-specific datason configs
- Version Control: Track serialization configs with model versions
- Testing: Validate serialization compatibility in CI/CD
- Monitoring: Track serialization performance and errors
End-to-End Data Flow¶
This comprehensive diagram shows how data flows through the entire ecosystem:
graph TD
subgraph "Client Applications"
A[Web Dashboard] --> B[Mobile App]
B --> C[CLI Tool]
C --> D[Jupyter Notebook]
end
subgraph "API Layer"
E[REST Endpoints] --> F[GraphQL API]
F --> G[WebSocket Stream]
G --> H[gRPC Service]
end
subgraph "Datason Processing Hub"
I[Request Validation] --> J[Type Detection]
J --> K[UUID Conversion<br/>String ↔ UUID]
K --> L[Date Formatting<br/>ISO ↔ DateTime]
L --> M[Custom ML Types<br/>Models, Studies, etc.]
M --> N[Response Serialization]
end
subgraph "ML Model Services"
O[BentoML<br/>Production Ready] --> P[Ray Serve<br/>Scalable]
P --> Q[MLflow<br/>Experiment Tracking]
Q --> R[Streamlit<br/>Interactive UI]
R --> S[Custom FastAPI<br/>Flexible]
end
subgraph "Storage Systems"
T[PostgreSQL<br/>Structured Data] --> U[Redis<br/>Cache & Sessions]
U --> V[MongoDB<br/>Document Store]
V --> W[S3/MinIO<br/>Object Storage]
W --> X[InfluxDB<br/>Time Series]
end
subgraph "External Integrations"
Y[Slack Notifications] --> Z[Email Alerts]
Z --> AA[Webhook Callbacks]
AA --> BB[Third-party APIs]
end
%% Data Flow
A --> E
B --> E
C --> F
D --> G
E --> I
F --> I
G --> I
H --> I
N --> O
N --> P
N --> Q
N --> R
N --> S
O --> T
P --> U
Q --> V
R --> W
S --> X
O --> Y
P --> Z
Q --> AA
R --> BB
%% Bidirectional flows
I -.-> N
T -.-> I
U -.-> I
V -.-> I
W -.-> I
X -.-> I
%% Styling
classDef client fill:#e3f2fd,stroke:#0d47a1,stroke-width:2px
classDef api fill:#f1f8e9,stroke:#33691e,stroke-width:2px
classDef datason fill:#e1f5fe,stroke:#01579b,stroke-width:4px
classDef ml fill:#fce4ec,stroke:#880e4f,stroke-width:2px
classDef storage fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
classDef external fill:#fff3e0,stroke:#e65100,stroke-width:2px
class A,B,C,D client
class E,F,G,H api
class I,J,K,L,M,N datason
class O,P,Q,R,S ml
class T,U,V,W,X storage
class Y,Z,AA,BB external
Key Benefits¶
1. Consistency Across Services¶
- All services use the same serialization format
- UUIDs are consistently handled as strings in APIs
- Dates follow ISO format standards
- Custom ML types are preserved across frameworks
2. Reduced Integration Complexity¶
- No more Pydantic validation errors
- Seamless data exchange between services
- Simplified debugging and troubleshooting
- Consistent error handling
3. Performance Optimization¶
- Efficient caching due to consistent serialization
- Reduced data transformation overhead
- Optimized for ML workloads
- Configurable performance limits
4. Developer Experience¶
- Single configuration for all services
- Clear documentation and examples
- Type safety and validation
- Easy debugging and monitoring
Implementation Examples¶
Basic Configuration¶
from datason import get_api_config, serialize, deserialize
# Use the standard API configuration
config = get_api_config()
# Serialize data for API responses
response_data = serialize(prediction_result, config=config)
# Deserialize incoming requests
features = deserialize(request_data, config=config)
Framework Integration¶
# BentoML Service
import bentoml
from datason import get_api_config
config = get_api_config()
@svc.api(input=JSON(), output=JSON())
def predict(input_data: dict) -> dict:
features = deserialize(input_data["features"], config=config)
prediction = model.predict(features)
return serialize({"prediction": prediction}, config=config)
Production Monitoring¶
from datason import get_api_config
from prometheus_client import Counter, Histogram
config = get_api_config()
request_counter = Counter('predictions_total', ['model_version', 'status'])
latency_histogram = Histogram('prediction_latency_seconds')
@latency_histogram.time()
def predict_with_monitoring(features):
try:
result = model.predict(features)
request_counter.labels(model_version="1.0.0", status="success").inc()
return serialize(result, config=config)
except Exception as e:
request_counter.labels(model_version="1.0.0", status="error").inc()
raise
Next Steps¶
- Review the Production Patterns Guide for detailed implementation patterns
- Explore Framework-Specific Examples for your ML serving platform
- Set up monitoring using the patterns shown in the architecture
- Implement A/B testing with consistent serialization across model versions
- Scale your deployment using the production-ready patterns