π§ Modern API: Utility Functions¶
Helper functions for JSON compatibility, API discovery, and assistance.
π― Function Overview¶
Function | Purpose | Best For |
---|---|---|
dumps() / loads() |
JSON module compatibility | Drop-in replacement |
help_api() |
Interactive guidance | Learning and discovery |
get_api_info() |
API metadata | Programmatic access |
π¦ Detailed Function Documentation¶
dumps() / loads()¶
JSON module compatibility with intelligent type handling.
datason.dumps(obj: Any, **kwargs: Any) -> Any
¶
Enhanced serialization returning dict (DataSON's smart default).
This is DataSON's enhanced API that returns a dict with smart type handling, datetime parsing, ML support, and other advanced features.
For JSON string output or stdlib compatibility, use datason.json.dumps() or dumps_json().
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obj
|
Any
|
Object to serialize |
required |
**kwargs
|
Any
|
DataSON configuration options |
{}
|
Returns:
Type | Description |
---|---|
Any
|
Serialized dict with enhanced type handling |
Examples:
>>> obj = {"timestamp": datetime.now(), "data": [1, 2, 3]}
>>> result = dumps(obj) # Returns dict with smart datetime handling
>>> # For JSON string compatibility:
>>> import datason.json as json
>>> json_str = json.dumps(obj) # Returns JSON string
Source code in datason/api.py
datason.loads(s: str, **kwargs: Any) -> Any
¶
Enhanced JSON string deserialization (DataSON's smart default).
This provides smart deserialization with datetime parsing, type reconstruction, and other DataSON enhancements. For stdlib json.loads() compatibility, use datason.json.loads() or loads_json().
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s
|
str
|
JSON string to deserialize |
required |
**kwargs
|
Any
|
DataSON configuration options |
{}
|
Returns:
Type | Description |
---|---|
Any
|
Deserialized Python object with enhanced type handling |
Example
json_str = '{"timestamp": "2024-01-01T00:00:00Z", "data": [1, 2, 3]}' result = loads(json_str) # Smart parsing with datetime handling
For JSON compatibility:¶
import datason.json as json result = json.loads(json_str) # Exact json.loads() behavior
Source code in datason/api.py
JSON Compatibility Example:
import datason as ds
from datetime import datetime
import numpy as np
# Drop-in replacement for json.dumps/loads
data = {
"timestamp": datetime.now(),
"array": np.array([1, 2, 3]),
"value": 42.5
}
# Like json.dumps() but with type intelligence
json_string = ds.dumps(data)
# Like json.loads() but with type restoration
restored = ds.loads(json_string)
print(type(restored["timestamp"])) # <class 'datetime.datetime'>
print(type(restored["array"])) # <class 'numpy.ndarray'>
help_api()¶
Interactive API guidance and recommendations.
datason.help_api() -> Dict[str, Any]
¶
Get help on choosing the right API function.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dictionary with API guidance and function recommendations |
Example
help_info = help_api() print(help_info['recommendations'])
Source code in datason/api.py
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
|
Interactive Guidance Example:
# Get personalized function recommendations
ds.help_api()
# Output example:
# π― datason API Guide
#
# SERIALIZATION (Dump Functions):
# β’ dump() - General purpose serialization
# β’ dump_ml() - ML models, tensors, NumPy arrays
# β’ dump_api() - Web APIs, clean JSON output
# β’ dump_secure() - Sensitive data with PII redaction
#
# DESERIALIZATION (Load Functions):
# β’ load_basic() - 60-70% success, fastest (exploration)
# β’ load_smart() - 80-90% success, moderate speed (production)
# β’ load_perfect() - 100% success, requires template (critical)
# Get help for specific categories
ds.help_api("dump") # Focus on serialization
ds.help_api("load") # Focus on deserialization
ds.help_api("security") # Focus on security features
get_api_info()¶
Comprehensive API metadata and feature information.
datason.get_api_info() -> Dict[str, Any]
¶
Get information about the modern API.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dictionary with API version and feature information |
Source code in datason/api.py
API Metadata Example:
# Get comprehensive API information
api_info = ds.get_api_info()
print("Available functions:")
print("Dump functions:", api_info['dump_functions'])
print("Load functions:", api_info['load_functions'])
print("Utility functions:", api_info['utility_functions'])
print("\nRecommendations:")
print("For ML workflows:", api_info['recommendations']['ml'])
print("For web APIs:", api_info['recommendations']['web'])
print("For security:", api_info['recommendations']['security'])
# Explore capabilities
print("\nFeatures:")
print("Supported types:", api_info['features']['supported_types'])
print("Security features:", api_info['features']['security'])
print("Performance features:", api_info['features']['performance'])
# Version and compatibility info
print("\nVersion info:")
print("API version:", api_info['version']['api'])
print("Package version:", api_info['version']['package'])
print("Compatibility:", api_info['compatibility'])
π API Discovery Workflow¶
Learning the API¶
# Step 1: Get overview
ds.help_api()
# Step 2: Get detailed information
info = ds.get_api_info()
# Step 3: Explore specific areas
ds.help_api("ml") # ML-specific guidance
ds.help_api("security") # Security-specific guidance
# Step 4: Use the functions
data = ds.dump_ml(model_data) # Based on guidance
loaded = ds.load_smart(data) # Progressive complexity
Integration Patterns¶
# JSON module migration
import json
import datason as ds
# Replace json with datason for better type handling
# Old: json.dumps(data)
# New: ds.dumps(data)
# Old: json.loads(json_string)
# New: ds.loads(json_string)
# Benefits: automatic type preservation
original = {"date": datetime.now(), "array": np.array([1, 2, 3])}
restored = ds.loads(ds.dumps(original))
# Types are preserved automatically!
π Development Workflow Integration¶
Interactive Development¶
# In Jupyter notebooks or interactive development
def explore_data(data):
# Get recommendations
ds.help_api()
# Serialize with appropriate function
if "model" in str(type(data)):
return ds.dump_ml(data)
elif "sensitive" in data:
return ds.dump_secure(data)
else:
return ds.dump(data)
# Programmatic API selection
info = ds.get_api_info()
best_function = info['recommendations']['for_data_type'](type(my_data))
Documentation and Onboarding¶
# For new team members
def onboard_developer():
print("Welcome to datason!")
ds.help_api()
print("\nDetailed API information:")
info = ds.get_api_info()
print(f"Available functions: {len(info['all_functions'])}")
print(f"Supported data types: {info['features']['supported_types']}")
print("\nTry these examples:")
print("ds.dump_ml(model_data) # For ML workflows")
print("ds.dump_api(response) # For web APIs")
print("ds.load_smart(json) # For production loading")
π Related Documentation¶
- Modern API Overview - Complete modern API guide
- Serialization Functions - Dump functions
- Deserialization Functions - Load functions
- Quick Start Guide - Getting started tutorial