π§ Modern API: Utility Functions¶
Helper functions for JSON compatibility, API discovery, and assistance.
π― Function Overview¶
Function | Purpose | Best For |
---|---|---|
dumps() / loads() |
JSON module compatibility | Drop-in replacement |
help_api() |
Interactive guidance | Learning and discovery |
get_api_info() |
API metadata | Programmatic access |
π¦ Detailed Function Documentation¶
dumps() / loads()¶
JSON module compatibility with intelligent type handling.
datason.dumps(obj: Any, **kwargs: Any) -> Any
¶
Enhanced serialization returning dict (DataSON's smart default).
This is DataSON's enhanced API that returns a dict with smart type handling, datetime parsing, ML support, and other advanced features.
For JSON string output or stdlib compatibility, use datason.json.dumps() or dumps_json().
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obj
|
Any
|
Object to serialize |
required |
**kwargs
|
Any
|
DataSON configuration options |
{}
|
Returns:
Type | Description |
---|---|
Any
|
Serialized dict with enhanced type handling |
Examples:
>>> obj = {"timestamp": datetime.now(), "data": [1, 2, 3]}
>>> result = dumps(obj) # Returns dict with smart datetime handling
>>> # For JSON string compatibility:
>>> import datason.json as json
>>> json_str = json.dumps(obj) # Returns JSON string
Source code in datason/api.py
datason.loads(s: str, **kwargs: Any) -> Any
¶
Enhanced JSON string deserialization (DataSON's smart default).
This provides smart deserialization with datetime parsing, type reconstruction, and other DataSON enhancements. For stdlib json.loads() compatibility, use datason.json.loads() or loads_json().
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s
|
str
|
JSON string to deserialize |
required |
**kwargs
|
Any
|
DataSON configuration options |
{}
|
Returns:
Type | Description |
---|---|
Any
|
Deserialized Python object with enhanced type handling |
Example
json_str = '{"timestamp": "2024-01-01T00:00:00Z", "data": [1, 2, 3]}' result = loads(json_str) # Smart parsing with datetime handling
For JSON compatibility:¶
import datason.json as json result = json.loads(json_str) # Exact json.loads() behavior
Source code in datason/api.py
JSON Compatibility Example:
import datason as ds
from datetime import datetime
import numpy as np
# Drop-in replacement for json.dumps/loads
data = {
"timestamp": datetime.now(),
"array": np.array([1, 2, 3]),
"value": 42.5
}
# Like json.dumps() but with type intelligence
json_string = ds.dumps(data)
# Like json.loads() but with type restoration
restored = ds.loads(json_string)
print(type(restored["timestamp"])) # <class 'datetime.datetime'>
print(type(restored["array"])) # <class 'numpy.ndarray'>
help_api()¶
Interactive API guidance and recommendations.
datason.help_api() -> Dict[str, Any]
¶
Get help on choosing the right API function.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dictionary with API guidance and function recommendations |
Example
help_info = help_api() print(help_info['recommendations'])
Source code in datason/api.py
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 |
|
Interactive Guidance Example:
# Get personalized function recommendations
ds.help_api()
# Output example:
# π― datason API Guide
#
# SERIALIZATION (Dump Functions):
# β’ dump() - General purpose serialization
# β’ dump_ml() - ML models, tensors, NumPy arrays
# β’ dump_api() - Web APIs, clean JSON output
# β’ dump_secure() - Sensitive data with PII redaction
#
# DESERIALIZATION (Load Functions):
# β’ load_basic() - 60-70% success, fastest (exploration)
# β’ load_smart() - 80-90% success, moderate speed (production)
# β’ load_perfect() - 100% success, requires template (critical)
# Get help for specific categories
ds.help_api("dump") # Focus on serialization
ds.help_api("load") # Focus on deserialization
ds.help_api("security") # Focus on security features
get_api_info()¶
Comprehensive API metadata and feature information.
datason.get_api_info() -> Dict[str, Any]
¶
Get information about the modern API.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dictionary with API version and feature information |
Source code in datason/api.py
API Metadata Example:
# Get comprehensive API information
api_info = ds.get_api_info()
print("Available functions:")
print("Dump functions:", api_info['dump_functions'])
print("Load functions:", api_info['load_functions'])
print("Utility functions:", api_info['utility_functions'])
print("\nRecommendations:")
print("For ML workflows:", api_info['recommendations']['ml'])
print("For web APIs:", api_info['recommendations']['web'])
print("For security:", api_info['recommendations']['security'])
# Explore capabilities
print("\nFeatures:")
print("Supported types:", api_info['features']['supported_types'])
print("Security features:", api_info['features']['security'])
print("Performance features:", api_info['features']['performance'])
# Version and compatibility info
print("\nVersion info:")
print("API version:", api_info['version']['api'])
print("Package version:", api_info['version']['package'])
print("Compatibility:", api_info['compatibility'])
π API Discovery Workflow¶
Learning the API¶
# Step 1: Get overview
ds.help_api()
# Step 2: Get detailed information
info = ds.get_api_info()
# Step 3: Explore specific areas
ds.help_api("ml") # ML-specific guidance
ds.help_api("security") # Security-specific guidance
# Step 4: Use the functions
data = ds.dump_ml(model_data) # Based on guidance
loaded = ds.load_smart(data) # Progressive complexity
Integration Patterns¶
# JSON module migration
import json
import datason as ds
# Replace json with datason for better type handling
# Old: json.dumps(data)
# New: ds.dumps(data)
# Old: json.loads(json_string)
# New: ds.loads(json_string)
# Benefits: automatic type preservation
original = {"date": datetime.now(), "array": np.array([1, 2, 3])}
restored = ds.loads(ds.dumps(original))
# Types are preserved automatically!
π Development Workflow Integration¶
Interactive Development¶
# In Jupyter notebooks or interactive development
def explore_data(data):
# Get recommendations
ds.help_api()
# Serialize with appropriate function
if "model" in str(type(data)):
return ds.dump_ml(data)
elif "sensitive" in data:
return ds.dump_secure(data)
else:
return ds.dump(data)
# Programmatic API selection
info = ds.get_api_info()
best_function = info['recommendations']['for_data_type'](type(my_data))
Documentation and Onboarding¶
# For new team members
def onboard_developer():
print("Welcome to datason!")
ds.help_api()
print("\nDetailed API information:")
info = ds.get_api_info()
print(f"Available functions: {len(info['all_functions'])}")
print(f"Supported data types: {info['features']['supported_types']}")
print("\nTry these examples:")
print("ds.dump_ml(model_data) # For ML workflows")
print("ds.dump_api(response) # For web APIs")
print("ds.load_smart(json) # For production loading")
π Related Documentation¶
- Modern API Overview - Complete modern API guide
- Serialization Functions - Dump functions
- Deserialization Functions - Load functions
- Quick Start Guide - Getting started tutorial