📋 API Reference¶
Complete API documentation for datason - the perfect drop-in replacement for Python's JSON module with enhanced features.
🎯 JSON Module Drop-in Replacement¶
Zero migration effort - datason works exactly like Python's json
module with optional enhanced features:
Perfect drop-in replacement for Python's json module
# Your existing code works unchanged
import datason.json as json
# Exact same API as stdlib json
data = json.loads('{"timestamp": "2024-01-01T00:00:00Z"}')
# Returns: {'timestamp': '2024-01-01T00:00:00Z'} # String (exact json behavior)
json_string = json.dumps({"key": "value"}, indent=2)
# All json.dumps() parameters work exactly the same
Same API with intelligent enhancements automatically enabled
# Just import datason for enhanced features
import datason
# Smart datetime parsing automatically enabled
data = datason.loads('{"timestamp": "2024-01-01T00:00:00Z"}')
# Returns: {'timestamp': datetime.datetime(2024, 1, 1, 0, 0, tzinfo=timezone.utc)}
# Enhanced dict output for chaining and inspection
result = datason.dumps({"timestamp": datetime.now()})
# Returns: dict with enhanced type handling
🚀 Advanced APIs¶
For specialized use cases, datason provides advanced APIs with progressive complexity:
Intention-revealing function names with progressive complexity
import datason as ds
# Clear intent - what you want to achieve
secure_data = ds.dump_secure(sensitive_data) # Security-first
ml_data = ds.dump_ml(model_data) # ML-optimized
api_data = ds.dump_api(response_data) # Clean web APIs
# Progressive complexity - choose your level
basic_data = ds.load_basic(json_data) # 60-70% accuracy, fast
smart_data = ds.load_smart(json_data) # 80-90% accuracy, balanced
perfect_data = ds.load_perfect(json_data) # 100% accuracy, thorough
Comprehensive configuration with maximum control
📖 API Documentation Sections¶
JSON Module Replacement¶
- JSON Drop-in Replacement - ⭐ Perfect compatibility with Python's json module plus enhanced features
Modern API Functions¶
- Modern API Overview - Intention-revealing functions with progressive complexity
- Serialization Functions - dump(), dump_ml(), dump_api(), dump_secure(), etc.
- Deserialization Functions - load_basic(), load_smart(), load_perfect(), load_typed()
- Utility Functions - dumps/loads, help_api(), get_api_info()
Traditional API Functions¶
- Core Functions - serialize(), deserialize(), auto_deserialize(), safe_deserialize()
- Configuration System - SerializationConfig, presets, and customization
- Chunked & Streaming - Large data processing and memory management
- Template System - Data validation and structure enforcement
Specialized Features¶
- ML Integration - Machine learning library support
- Data Privacy - Redaction engines and security features
- Integrity Functions - Hashing and signature utilities
- Type System - Advanced type handling and conversion
- Utilities - Helper functions and data processing tools
Reference¶
- Exceptions - Error handling and custom exceptions
- Enums & Constants - Configuration enums and constants
- Complete API Reference - Auto-generated documentation for all functions
🎯 Quick Start Examples¶
🔄 Perfect JSON Module Replacement¶
# Option 1: Perfect compatibility (zero risk migration)
import datason.json as json
# Works exactly like Python's json module
data = json.loads('{"timestamp": "2024-01-01T00:00:00Z"}')
output = json.dumps({"key": "value"}, indent=2)
# Option 2: Enhanced features (smart datetime parsing)
import datason
# Same API, automatic enhancements
data = datason.loads('{"timestamp": "2024-01-01T00:00:00Z"}')
# Returns: {'timestamp': datetime.datetime(2024, 1, 1, 0, 0, tzinfo=timezone.utc)}
output = datason.dumps({"timestamp": datetime.now()})
# Returns: dict with enhanced type handling
🚀 Advanced Features (When You Need Them)¶
import datason as ds
# ML-optimized serialization
ml_data = ds.dump_ml({"model": pytorch_model, "data": numpy_arrays})
# Security-focused with PII redaction
secure_data = ds.dump_secure({"name": "Alice", "email": "alice@email.com"})
# Progressive loading accuracy
basic_data = ds.load_basic(json_data) # 60-70% accuracy, fast
smart_data = ds.load_smart(json_data) # 80-90% accuracy, balanced
perfect_data = ds.load_perfect(json_data) # 100% accuracy, comprehensive
🔗 Getting Started¶
- New to datason? Start with the Quick Start Guide
- Need examples? Browse the Examples Gallery
- Looking for specific functions? Use the Complete API Reference
📚 Related Documentation¶
- User Guide - Getting started guide
- Features - Detailed feature documentation
- Examples - Real-world usage patterns