Skip to content

๐Ÿ” Complete Pipeline Audit & Optimization Report

๐Ÿ“‹ Pipeline Overview

We have 7 distinct workflows with varying levels of optimization:

Pipeline File Primary Purpose Current Cache Status
๐Ÿงช Main CI ci.yml Plugin testing matrix โœ… Optimized
๐Ÿ” Code Quality ruff.yml Linting & security โš ๏ธ Basic caching
๐Ÿ“š Documentation docs.yml Build & deploy docs โœ… Well cached
๐Ÿท๏ธ Release release.yml Create releases โŒ No caching
๐Ÿ“ฆ Publish publish.yml PyPI publishing โŒ No caching
๐Ÿค– Auto-merge auto-merge.yml Dependabot automation โŒ No caching

๐Ÿ”ง Detailed Pipeline Analysis

1. ๐Ÿงช Main CI Pipeline (ci.yml)

Triggers: - โœ… Push to main, develop - โœ… Pull requests to main - โœ… Ignores docs-only changes

Caching Strategy: - โœ… 3-layer cache system (Base + Dependency-specific + pip) - โœ… Parallel execution (5 jobs max) - โœ… Smart cache keys with content hashing

Status: ๐ŸŸข FULLY OPTIMIZED

2. ๐Ÿ” Code Quality Pipeline (ruff.yml)

Triggers: - โœ… Push to main, develop - โœ… Pull requests to main, develop

Current Caching:

# Basic pip cache only
key: ${{ runner.os }}-quality-pip-${{ hashFiles('**/pyproject.toml') }}

Issues: - โš ๏ธ Redundancy: Overlaps with main CI quality job - โš ๏ธ Basic caching: Only caches pip, not installed packages - โš ๏ธ Separate execution: Doesn't leverage main CI cache

Status: ๐ŸŸก NEEDS OPTIMIZATION

3. ๐Ÿ“š Documentation Pipeline (docs.yml)

Triggers: - โœ… Push to main (docs paths only) - โœ… PR to main (docs paths only) - โœ… Manual dispatch

Caching Strategy:

# Excellent 2-layer cache
1. Pip dependencies: docs-pip-{pyproject.toml}
2. MkDocs build cache: mkdocs-{mkdocs.yml}-{docs/**}

Status: ๐ŸŸข WELL OPTIMIZED

4. ๐Ÿท๏ธ Release Pipeline (release.yml)

Triggers: - โœ… Git tags (v*.*.*) - โœ… Manual dispatch

Current Caching: - โŒ No caching at all

Issues: - โŒ Installs dependencies from scratch every time - โŒ No build artifact caching - โš ๏ธ Complex logic without optimization

Status: ๐Ÿ”ด NO OPTIMIZATION

5. ๐Ÿ“ฆ Publish Pipeline (publish.yml)

Triggers: - โœ… Release published - โœ… Manual dispatch

Current Caching: - โŒ No caching at all

Issues: - โŒ Reinstalls build tools every time - โŒ No package build caching - โš ๏ธ Could reuse artifacts from release pipeline

Status: ๐Ÿ”ด NO OPTIMIZATION

6. ๐Ÿค– Auto-merge Pipeline (auto-merge.yml)

Triggers: - โœ… PR events (labeled, review, etc.)

Current Caching: - โŒ No caching (but also no heavy dependencies)

Status: ๐ŸŸข OPTIMIZATION NOT NEEDED

๐Ÿšจ Major Issues & Recommendations

Issue 1: Pipeline Redundancy

Problem: ruff.yml duplicates quality checks from main CI

Solution: Consolidate or eliminate redundant pipeline

Issue 2: Cache Fragmentation

Problem: Each pipeline has its own caching strategy

Solution: Unified cache keys and shared base cache

Issue 3: Missing Optimization Opportunities

Problem: Release and publish pipelines are slow

Solution: Add caching and artifact reuse

๐Ÿš€ Optimization Strategy

Consolidate quality checks into main CI:

  1. โœ… Remove ruff.yml - merge into main CI
  2. โœ… Enhance main CI quality job with all checks
  3. โœ… Single source of truth for all code quality

Benefits: - Eliminates redundancy - Better cache utilization - Unified reporting - Faster feedback (parallel with tests)

Option B: Shared Cache Approach

Keep separate pipelines but optimize caching:

  1. Create shared base cache across all pipelines
  2. Standardize cache keys
  3. Add artifact sharing between pipelines

Benefits: - Maintains separation of concerns - Reduces duplicate installations - Better for complex workflows

๐Ÿ“Š Proposed Cache Strategy

Unified Base Cache

# Shared across ALL pipelines
key: shared-base-${{ runner.os }}-py3.11-${{ hashFiles('**/pyproject.toml') }}
path: |
  ~/.cache/pip
  ~/.local/lib/python3.11/site-packages
contains: pip, setuptools, wheel, build, twine, ruff, bandit, mypy

Specialized Caches

# Documentation specific
key: docs-${{ runner.os }}-${{ hashFiles('mkdocs.yml') }}-${{ hashFiles('docs/**') }}

# ML dependencies
key: ml-deps-${{ runner.os }}-${{ hashFiles('**/pyproject.toml') }}

# Dev dependencies  
key: dev-deps-${{ runner.os }}-${{ hashFiles('**/pyproject.toml') }}

๐ŸŽฏ Immediate Action Plan

Phase 1: Quick Wins (This Week)

  1. โœ… Remove redundant ruff.yml
  2. โœ… Enhance main CI quality job
  3. โœ… Add caching to release pipeline

Phase 2: Advanced Optimization (Next Week)

  1. โš™๏ธ Implement shared base cache
  2. โš™๏ธ Add artifact reuse between pipelines
  3. โš™๏ธ Optimize publish pipeline

Phase 3: Monitoring & Fine-tuning (Ongoing)

  1. ๐Ÿ“Š Monitor cache hit rates
  2. ๐Ÿ“Š Track pipeline execution times
  3. ๐Ÿ“Š Optimize based on usage patterns

๐Ÿ“ˆ Expected Performance Improvements

Cache Hit Rate Targets

Pipeline Current Target Improvement
Main CI 85% 90% +5%
Quality 0% 85% +85%
Docs 80% 90% +10%
Release 0% 70% +70%
Publish 0% 70% +70%

Execution Time Targets

Pipeline Current Target Improvement
Main CI 5-7 min 4-6 min ~15%
Quality 2-3 min 1-2 min ~40%
Docs 3-4 min 2-3 min ~25%
Release 5-8 min 3-5 min ~35%
Publish 3-5 min 2-3 min ~35%

Resource Savings

  • Total CI minutes/month: -20-30%
  • Developer wait time: -30-40%
  • Cache storage: +50MB (negligible cost)

๐Ÿ› ๏ธ Implementation Checklist

Immediate (Today)

  • Remove ruff.yml workflow
  • Update main CI with comprehensive quality checks
  • Test consolidated pipeline

Short-term (This Week)

  • Add caching to release pipeline
  • Add caching to publish pipeline
  • Implement shared base cache strategy

Medium-term (Next Week)

  • Monitor and optimize cache hit rates
  • Implement artifact sharing
  • Fine-tune parallel execution

Long-term (Ongoing)

  • Regular cache performance audits
  • Pipeline execution time monitoring
  • Continuous optimization based on usage

๐ŸŽ‰ Success Metrics

We'll measure success by: - โœ… Faster feedback: <5 min average pipeline time - โœ… Higher cache hits: >85% across all pipelines
- โœ… Reduced redundancy: No duplicate quality checks - โœ… Better DX: Faster PR feedback for developers - โœ… Cost efficiency: 20-30% reduction in CI minutes

This optimization strategy will make our CI/CD pipeline significantly more efficient while maintaining comprehensive testing coverage!